Generalized Maximum Entropy for Supervised Classification
نویسندگان
چکیده
The maximum entropy principle advocates to evaluate events’ probabilities using a distribution that maximizes among those satisfy certain expectations’ constraints. Such can be generalized for arbitrary decision problems where it corresponds minimax approaches. This paper establishes framework supervised classification based on the leads risk classifiers (MRCs). We develop learning techniques determine MRCs general functions and provide performance guarantees by means of convex optimization. In addition, we describe relationship presented with existing methods, quantify in comparison proposed bounds conventional methods.
منابع مشابه
Semi-Supervised Learning via Generalized Maximum Entropy
Various supervised inference methods can be analyzed as convex duals of the generalized maximum entropy (MaxEnt) framework. Generalized MaxEnt aims to find a distribution that maximizes an entropy function while respecting prior information represented as potential functions in miscellaneous forms of constraints and/or penalties. We extend this framework to semi-supervised learning by incorpora...
متن کاملGeneralized Maximum Entropy
A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this probiem, advocated by E.T. Jaynes [1], is to igriore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic M...
متن کاملGeneralized maximum entropy estimation
We consider the problem of estimating a probability distribution that maximizes the entropy while satisfying a finite number of moment constraints, possibly corrupted by noise. Based on duality of convex programming, we present a novel approximation scheme using a smoothed fast gradient method that is equipped with explicit bounds on the approximation error. We further demonstrate how the prese...
متن کاملMaximum Entropy Semi-Supervised Inverse Reinforcement Learning
A popular approach to apprenticeship learning (AL) is to formulate it as an inverse reinforcement learning (IRL) problem. The MaxEnt-IRL algorithm successfully integrates the maximum entropy principle into IRL and unlike its predecessors, it resolves the ambiguity arising from the fact that a possibly large number of policies could match the expert’s behavior. In this paper, we study an AL sett...
متن کاملUsing Maximum Entropy for Text Classification
This paper proposes the use of maximum entropy techniques for text classification. Maximum entropy is a probability distribution estimation technique widely used for a variety of natural language tasks, such as language modeling, part-of-speech tagging, and text segmentation. The underlying principle of maximum entropy is that without external knowledge, one should prefer distributions that are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2022
ISSN: ['0018-9448', '1557-9654']
DOI: https://doi.org/10.1109/tit.2022.3143764